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Al~tract--A particle imaging technique has been used to collect droplet displacement statistics in a round 
turbulent jet of air. Droplets are injected on the jet axis, and a laser sheet and position-sensitive 
photomultiplier tube are used to track their radial displacement and time-of-flight. Dispersion statistics 
can be computed which are Lagrangian or Eulerian in nature. The experiments have been simulated 
numerically using a second-order closure scheme for the jet and a stochastic simulation for the particle 
trajectories. Results are presented for non-vaporizing droplets of sizes from 35 to 160 #m. The simulations 
have underscored the importance of initial conditions and early droplet displacement history on the 
droplet trajectory for droplets with large inertia relative to the turbulence. Estimates of initial conditions 
have been made and their effect on dispersion is quantified. 
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1. I N T R O D U C T I O N  

Liquid sprays are widely utilized in our society for energy production, application of coatings and 
waste incineration. Increasingly, designers of spray systems employ computers for the numerical 
simulations of sprays in the development of improved devices. The numerical problem is complex 
and today's "state-of-the-art" spray simulations are somewhat crude. Continued improvement of 
spray models requires experimental measurements obtained in well-characterized turbulent flows, 
since turbulence plays an important role in the transport process. The objective of this study is to 
improve our understanding or turbulence particle dispersion. 

The classical study of turbulent dispersion of a fluid particle was that of Taylor (1921). The 
fundamental result gives the mean square particle displacement, or dispersion, in homogeneous 
turbulence in terms of a Lagrangian fluid particle autocorrelation: 

;Yo a2x:( t )  = 2 (V2,x2(t)) '/~(v~,x2(t'))lnR~,xz(t,  t ' )  d t '  dt ,  [1] 

where the dispersion is, by definition, the mean square displacement in the direction x2 from a point 
source and where the autocorrelation function R~.x2 is defined by 

(V~'xz(t)V~'xz(t')) [2] L t 
Rf .xz ( t , t  ) = 2 i/2 2 , 1/2, (Vr, x2(t)) (Vf, x2(t )) 

where t' = t + 0, with 0 being the lag or separation time of the correlation. Displacement is a 
random variable, and averages refer to ensembles of realizations of the variable at time t or t'. The 
statistically average fluid particle velocity,/,,2 ,,1/2 ",,~f.x2/ , is constant in time for flows stationary in the 
Lagrangian frame. As a constant, it can be written outside of the integrals of [1]. Snyder & Lumley 
(1971) pointed out that these equations can be applied to discrete particles with the appropriate 
definition of REx2 based on the velocity correlation of the discrete particle. Direct use of the theory 
requires knowledge of the particle's Lagrangian autocorrelation function, which is generally 
unknown. 

Although the theory is not directly applicable to more practical flows such a round jet, it does 
provide a framework for the interpretation of measurements. A special case of Taylor's theory is 
of interest here. For short times-of-flight (i.e. near the point of particle release), the particle velocity 
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is perfectly correlated with itself: t =0,  t ' ~ 0  such that R~,~2(O,t')_~ 1. Equation [1] can be 
integrated with (v2,~2(0))= (v2,~2(t')), and the dispersion is quadratic in time: 

a2x2 = (v2x2(0))t 2 (small t). [3] 

2 l For large separation times, the particle diffusivity ep,x2, commonly defined by ~ do~.xJd, is constant 
in stationary flows. 

Most measurements of round jet dispersion presented in the literature are of the Eulerian type, 
i.e. the data is obtained solely in the spatial domain. For example, Yuu et al. (1978) studied a 
turbulent round jet which was seeded with fly ash. Using an isokinetic sampling probe they 
measured mean particle fluxes. Recently, Hardalupas et al. (1989) have undertaken an investigation 
of particle flux and velocity statistics in a round jet (for x~/D < 30) seeded with round glass beads. 
The objective was to quantify the effects of mass loading and particle size on mean and r.m.s. 
velocities of the gas and particle phase and the particle axial mass flux. 

Measurements such as these may not be ideal for use in the development of spray models. 
Lagrangian statistics are fundamentally more relevant in developing spray models, which rely on 
the integration of particle equations of motion. Two studies in which Lagrangian measurements 
are presented are noted here. Snyder & Lumley (1971) performed a classic experiment on solid 
particle dispersion in quasi-homogeneous grid turbulence. Direct measurements of the Lagrangian 
particle velocity correlation and the dispersion rate were presented. Transformations were applied 
to compensate for turbulence decay so that the fluctuations were stationary. Measurements were 
not obtained near the particle injector. Vames & Hanratty (1988) have used a particle counter to 
provide essentially Lagrangian dispersion measurements of dispersion for droplets in isothermal 
pipe turbulence. The objective was to compare particle and fluid turbulence properties. 

These types of experiments are directly useful and relevant for the validation of spray models 
which are based on the integration of single particle trajectories. This widely used approach, 
proposed by Gosman & Ioannides (1981), relies on a random number generator to choose 
"eddy lifetimes" subject to some distribution. A number of researchers have since used this 
simulation technique (e.g. Shuen et al. 1983; Solomon et al. 1985a, b; Chen & Crowe 1984), and 
some are reviewed by Faeth (1987) and Crowe et al. (1988). However, the initial conditions need 
to be prescribed, as pointed out by Berlemont et al. (1990). They observed that much of the 
available data on droplet dispersion does not include the initial conditions required by stochastic 
simulations. 

The study by Solomon et al. (1985a) investigated a spray formed with an air-atomized injector. 
In their stochastic simulation, they found it was necessary to estimate initial conditions for the 
droplets from measurements obtained at x~/D = 50 in order to avoid the effects of liquid ligaments 
near the injector. 

This paper presents experimental measurements and numerical simulations of droplet dispersion 
within an isothermal round jet shear flow. The measurements may be analyzed in either the Eulerian 
or Lagrangian frame. A Lagrangian measurement is obtained if the dependent variables are found 
as a function of the independent variables of time and initial value at t = 0. A Eulerian type of 
measurements describes a dependent variable as a function of the spatial domain. One objective 
of this study is to quantify the effect of initial conditions on dispersion in a round jet. A range 
of diameters is considered with droplet response times which encompass the gas time scales. 

2. EXPERIMENTAL METHOD 

Details of the experimental method are discussed elsewhere by Call & Kennedy (1991) and only 
a brief description is provided here. A schematic of the experiment is shown in figure 1. A steady 
stream of droplets is generated using a piezoelectric transducer. The droplets are accelerated by 
the air flow in the nozzle contraction. As each droplet passes from the nozzle, it intercepts an 
He-Ne laser beam which is monitored by a photodiode. The diode signal is used as a trigger for 
the data acquisition system and allows the time-of-flight to be measured for each droplet. As the 
droplet travels axially downstream, it is radially displaced by the jet turbulence and the 
displacement from the jet axis is measured with a sheet of laser light and a position-sensitive 



P A R T I C L E  D I S P E R S I O N  I N  T U R B U L E N T  S H E A R  F L O W  893 

pulse 
generation 

curcuit 

air 

I I 

Ar-ion 
laser 

laser 
sheet 

CAMAC 

droplet 

~ generator 

droplet 
~ 1 ~ 1  ~injection 

I ' ~  shroud 

~ '  f f  He-Ne photo- .~'~,~'~/ laser diode 

~ p  r~-~x2 

X 1 

MT 

[ ~ 1  signal 
[ I amplifier 

Figure 1. Schematic of the experimental apparatus. 

photomult ipl ier  tube. Drople t  dispersion statistics are computed  f rom the posit ion measurements.  
Particle time-of-flight measurements  can be differentiated to give mean axial velocity profiles. 

For  the present air jet, the Reynolds  number  is 15,000 based on a nozzle diameter o f  7 mm. The 
axial velocity profile o f  the jet was measured with a hot-wire anemometer  and is shown in figure 2. 
The figure orientat ion was chosen to facilitate an accurate polynomial  curve fit, which is included 
in the caption.  The centerline velocity is 31 m/s and the measured r.m.s, velocity is 0.05 _ 0.02 m/s 
across the profile. 
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Figure 2. Hot-wire measurements of the velocity profile by the nozzle exit. The distance y from the outer 
edge of the jet is normalized by the nozzle radius R, The jet axial velocity U is normalized by the centerfine 
value Uc. A curve fit valid for y / R < 0 . 3  is: U / U c = - I . 3 7 3 6 5 4 E + 2 ( y / R ) ' - I . 2 1 1 9 5 3 E + 2 ( y / R )  3 
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The droplet diameter is calculated from measurements of terminal velocity, with an estimated 
uncertainty of ___ 2 #m. This technique has proved reliable in comparisons with microphotography. 
The droplet size is governed by a nozzle attached to the transducer. The present data for 
hexadecane droplets cover a range of  35-160 #m. The droplet mass fraction is of the order 10 --6 
and the droplets are separated by more than 1000 droplet diameters; hence, the droplets are 
non-interacting and have a negligible effect on the gas-phase flow properties. The vaporization of 
hexadecane droplets in air at 20°C is negligible over the times-of-flight under investigation (typically 
< 50 ms). Figure 1 illustrates the orientation of  the coordinate axes. 

As each droplet passes through the sheet an x2, x3 displacement pair for each drop is measured. 
The dispersion in the x2 or x3 direction is computed using the following expressions: 

1 n l n 

~=l 2 = ~=1 (X3"i--(X3))2' [4] 2 = ( x 2 . i -  ( x 2 ) )  ~, ~p,x3 n O" P,X2 n i = i = 

where n is the number of  droplet samples obtained and the x2i and x3i are the measured 
displacements from the jet axis for each droplet. Since the flow field and dispersion are 
axisymmetric, trp.x22 _- ap.x32 ," and since the dispersion is centered about the jet axis, (x2)  is 
numerically close to zero. For experimental dispersion measurements, a total of 1000 droplets are 
used for statistics at each axial location downstream from the air jet nozzle. The time-of-fright t 
and x2, x3 displacements are recorded for each droplet at a particular axial location Xl. 

3. N U M E R I C A L  S I M U L A T I O N  M E T H O D O L O G Y  

The dispersion of particles in the turbulent jet has been simulated numerically using a stochastic 
approach. The flow field was calculated with the Reynolds stress model of  Dibble et al. (1984), 
which yielded an Eulerian description of  the turbulence statistics. A Lagrangian simulation of the 
droplet dispersion was then performed in the same manner as Shuen et al. (1983) by integrating 
the equations for particle motion through the flow field. Three equations were used for the force 
components on a particle with only drag and gravity considered. Three equations for particle 
velocity were integrated simultaneously with a fourth-order Runge-Kutta  scheme to yield particle 
velocity fp and position ~p: 

dvp ~ D  d.~p 
dt = (v-p - t~ G)lvp - tSol + g, dt = fp' [5] 

where the drag coefficient CD = 24(1 + Re~a/6)/R%; is the particle Reynolds number based on the 
droplet diameter dp, the relative velocity of  the droplet and air I fp -  fGI and the air kinematic 
viscosity vo. The density of the particle and air are given by pp and PG, respectively. The drag 
coefficient CD includes a high Reynolds number correction to the Stokes formula which is important 
in modeling the behavior of  the relatively large droplets. Acceleration due to gravity, g, is non-zero 
in the x~ direction. One thousand particles were simulated to give representative statistics; the 
integration time step was 1 #s. 

The interaction of particles with the turbulence was simulated stochastically by randomly 
sampling the velocity probability density functions (pdfs), given the mean and variance of each flow 
velocity component as determined by the second-order closure. The velocity pdfs were assumed 
to be Gaussian. The typical eddy length and time scales were estimated in the same manner as 
Shuen et al. (1983): 

Lc 
L , = C x l . 5 / Z  , Te= ; [6] 

x is the turbulent kinetic energy and X is the dissipation rate. C is an empirical constant set equal 
to 0.28 for all simulations. The interaction time for the droplet with the turbulent eddy was taken 
to be either the eddy lifetime or the transit time for the droplet to cross the eddy, whichever is 
shorter. The latter quantity was evakmted in the following manner. The distance that a droplet 
travels is tracked from the beginning of  its interaction with an eddy. When this distance becomes 
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greater than the eddy length scale, the flow velocity pdfs are sampled for new values. For the 
simulations reported here, the eddy lifetime was usually less than the transit time. 

4. RESPONSE TIME SCALES 

The dispersion of  heavy particles deviates from fluid particles for several reasons, all relating to 
the particle's inertia. The droplets sizes which have been studied in this investigation cover a large 
range of  response time scales and inertial effects are important. The droplet relaxation time that 
characterizes the particle inertia is based on the terminal velocity of  the particles and is given by 

 P-g L j '  [7] 
where UT is the droplet terminal velocity, g is the gravitational acceleration constant, dp is the 
particle diameter, p is the density of the particle or gas and Co is the drag coefficient given in [6], 
with _the Reynolds number based on the droplet terminal velocity. Table 1 shows the scales for the 
droplets used in this investigation. 

Several characteristic time scales have been identified to characterize the gas phase. Wells & Stock 
(1981) use the Kolmogorov time scale ~: = x / / ~ ,  where Vo is the gas viscosity and X is the 
dissipation rate, and found it to be a useful indicator for the effects of  particle inertia. The 
Kolmogorov scale is characteristic of the smallest time scale of  the turbulence and if zp is of  the 
same order as TK, the droplet can be expected to follow nearly all gas fluctuations. (For our 
conditions, at Xl/D = 40, TK = 0.6 ms, and the smallest droplet response time is 3.0 ms.) A second 
gas time scale, used by Vames & Hanratty (1988) and Hardalupas et al. (1989) is given by the 
Lagrangian gas integral scale defined as T L = er/(v~ >, where/~f is the fluid particle diffusivity and 
(of ~) is the mean square gas velocity. Shuen et al. (1983) estimate a time scale based on a 
characteristic eddy lifetime given in [6]. This time scale is representative of the larger gas scales, 
which have the most influence on particle dispersion. 

A body force such as gravity can cause a convective shift of the particles relative to the gas, and 
can result in droplets having a tendency to fall from one region of correlated flow (a turbulent eddy) 
to another. This phenomenon, referred to in the literature as the crossing trajectories effect, has 
been shown to be important when the droplet terminal velocity is greater than or equal to the gas 
r.m.s, velocity. For  this investigation, the effect should not be significant since UT is always less 
than the r.m.s, gas velocity. 

Another effect of  inertia relevant to these experiments is related to the droplet velocity response 
time: a heavy droplet will pass through an eddy if the instantaneous inertial force is considerably 
larger than the drag force. Due to mean slip between the particles and the flow, the interaction 
time between a particle and an eddy can be significantly decreased. This inertia effect is related 

Table 1. Time scales of the air jet and droplets studied in this investigation 

Droplet diameter ~m) 
35 60 120 160 

Terminal velocity, UT (m/s) 0.029 0.092 0.27 0.43 
Terminal Reynolds, number, UTdplv 0.07 0.39 2.2 4.76 
Response time constant, % (ms) 2.9 9.1 28 44 
Turbulence Stokes number, zp/~ ta) 0.16 9.1 1.6 2.4 
Kolmogorov Stokes number, %/¢b tb) 4.76 15 45 70 
Acceleration Stokes number, %/T a 

x I/D = 20: (c~ 0.17 0.55 1.67 2.63 
x t/D = 40: 0.043 0.14 0.42 0.66 

Crossing trajectories ratio, Ur/vG ...... ta) 0.03 0.1 0.3 0.5 
Kolmogorov length scale 

Ratio, dp/~o 
xt/D = 20: 1.38 1.53 3.06 4.08 
xtD =40: 0.69 0.76 1.53 2.04 

(*)¢c = 18.ms. obtained from the jet simulation at xtD = 40 and [7]. 
Cb)zg = VX/~G/E = 0.6 ms, with E obtained from the jet simulation at x~/D = 40. 
~c)¢ a = 1 6 . 7  m s  a t  x~ D ffi 20 and 67 m s  x l / D  = 40. 
~d)Vv ....... = 0.90 m/s at x~/D = 40 on the jet axis from hot-wire measurements. 

IJMF 18/6--H 
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entirely to mean velocities as opposed to velocity fluctuations and can be particularly important 
in free shear flows, since the gas mean velocity is continuously decreasing. A time scale 
characterizing the slip due to acceleration in the gas mean velocity can be defined by the inverse 
velocity gradient of the gas: 

r. = ]d(Up,~, ) I dxl I ', [8] 

where (Up.x,) is the mean axial velocity of the gas. za is smallest near the jet exit beyond the 
potential core of the jet, and increases monotonically as the jet evolves. For our flow conditions: 
at Xl/D = 20, za = 0.0167 s; and at xm/D = 40, Va = 0.067 S. Since x~/D = 20, ~, is of the same order 
as the turbulence time scale, it should influence the dispersion. At xm/D = 40, this time scale is 
considerably larger than other scales and becomes unimportant. 

Additionally, mean slip can be imposed at the initial condition and sustained over long distances 
relative to the system geometry. This behavior could be of considerable importance in practical 
sprays, since much of the droplet mass may be contained in droplets with Stokes numbers > 1. 
Slip should diminish the importance of turbulence on dispersion if the relative velocity is of the 
order of the gas velocity fluctuations. 

The relative importance of inertial effects can be deduced by comparing the ratio of the particle 
response time to a gas time scale. If this ratio, or Stokes number, is > 1, the inertia significantly 
affects the droplet dispersion. As can be seen in table 1, for our flow conditions and droplet sizes, 
inertial effects should be important. 

The Kolmogorov length scales at xl/D = 20 and 40 for a jet Reynolds number of 15,000 are 
estimated to be 39 and 78 #m, respectively, using the relations given by Antonia et al. (1980). 
Because the smallest lengths scales of the turbulence are of the same order as the droplet diameters, 
it is possible that the turbulence may have an influence on the drag which is not predicted. 

5. DISPERSION MEASUREMENTS 

The radial dispersion of the droplets can be analyzed in either purely Eulerian or Lagrangian 
terms. The Eulerian dispersion of droplets is shown in figure 3 as a function of the axial location. 
The dispersion measurements ~.x:(xl) represent the droplet spread in one direction of the 
transverse plane of the jet flow. The subscript x2 will be used henceforth since x2 and x3 statistics 
contain the same information. Note that for all droplet sizes the dispersion begins to increase quite 
rapidly for xl/D > (20 to 30). 

The experimental approach reported here entails the collection of independent droplet samples 
of xl, xz, x3 and t; and thus, computations of tr~x~(t) and 2 . Crp,x2(Xl) can be considered separately. 
After collecting data at finely spaced axial locations along the jet, the data are sorted into narrow 
bins of time; the width of each bin is given by At/t <~ +_ 0.04. The results shown in figure 4 represent 
Lagrangian measurements of the x2 particle dispersion. Particle diffusivities, or dispersion rates, 
can be estimated from the quasi-linear portion of the data. The initial conditions for the simulations 
and results are summarized in table 2. Estimation of the initial conditions for the mean axial 
velocity is described in the next section. 

The simulations do a reasonable job of reproducing the data, particularly with respect to the 
particle diffusivity. However, the agreement is not as favorable as other attempts, such as those 
reviewed in Faeth (1987). The displacement statistics over the first 10 ms of the simulations 
significantly underpredict dispersion (even though the measured dispersion is small). 

Experimentally, early velocity fluctuations could be caused by two effects. Weak turbulence 
upstream of the nozzle exit could impart a very small random velocity on the droplets which persists 
down the nozzle and manifests itself as a perturbation on the initial condition. It is also possible 
that jet structure, i.e. strong vortical motions within the first 10 jet diameters could induce a random 
velocity on the droplets. The latter includes the dispersive effects of initial conditions at the nozzle 
exit as well as turbulent dispersion caused by interaction with the spear layer growth in the early 
stages of the jet evolution. This suggests that either the dynamics of the flow are not fully 
reproduced by the Reynolds stress closure model and/or the eddy lifetime approach does not 
accurately reproduce the actual particle velocity autocorrelation. One aspect of the latter point, 
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Figure 3. Eulerian dispersion measurements. 
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Figure 4. Lagrangian measurements of dispersion. 

namely that the eddy lifetime approach should lead to a linear correlation function, was discussed 
by Berlemont et  al. (1990). However, both effects are likely to be relevant. Further discussion of 
the initial conditions is given in section 7. 

6. TIME-OF-FLIGHT MEASUREMENTS 

Measurements of  mean time-of-flight are obtained by ensemble averaging the time each droplet 
takes to reach a given axial distance. Such time-of-flight measurements are shown in figure 5. The 
nearly quadratic dependence of  time-of-flight on axial position is regarded as consistent with that 
expected for the round jet configuration as a consequence of  the l / x  decay in the mean velocity. 

For the larger droplet, a hump in the data is observed for very small times (i.e. near the nozzle 
exit). This behavior is due to the fact that the large droplets significantly lag the flow at the exit. 
For the first 5-7 nozzle diameters, the droplets are accelerating in the potential core of the jet, where 
the gas velocity is 31 m/s. Beyond the core, the gas mean velocity drops rapidly, giving rise to an 
inflection point in the time-of-flight data where the gas and droplet mean velocities are equal. This 
point occurs near an Xl/D = 10. Beyond that point the gas mean velocity is less than the particle 
mean velocity, giving rise to slip. 

The mean velocity profiles for the droplets are easily obtained by differentiating a fifth-order 
polynomial curve fit of  the time-of-flight data and are shown in figure 6. The estimated velocity 
at Xl = 0, ( Up.=, )0, is used as the initial conditions for the simulations. The mean centerline velocity 
for the gas is shown as a dashed line. These data were obtained using hot-wire anemometry and 
are in agreement with other measurements of  rount jets (e.g. Antonia et al. 1980). The mean slip 
is approximated by the difference between the centerline gas velocity and mean droplet velocity, 
since the particles are not far from the center, with the exception of the smallest droplets at large 

Table 2. Summary of the experimental and numerical results 

Droplet diameter, dp (~m) 

35 60 120 160 

Droplet axial velocity at the nozzle exit, (Up,=~>0(m/s) 25 21 16.4 13.9 
Initial velocity fluctuation for the simulation, <vl~(0)> (m/s) 2 0.0 0.0 0.0 0.0 
Simulated mean square radial velocity at xl/D = 40, <v:p~,2 > (m/s) 2 0.51 0.24 0.076 0.048 
Measured particle diffusivity at xl/D ffi 40, %,n (m2/s) 0.0059 0.0037 N/A 0.00095 
Simulated particle diffusivity at xl/D = 40, ~p~,= (m2/s) 0.0060 0.0039 0.0014 0.0010 
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Figure 5. Ensemble-averaged time-of-flight measurements. Figure 6, Droplet mean axial velocities. 

x~/D. A typical maximum droplet Reynolds number for a 60 #m droplet with a maximum relative 
velocity of 5 m/s is Red = 21; for a 160 # m drop with a relative velocity of 8 m/s, Red = 88. Recalling 
the discussion in the previous section regarding the effect of mean slip on droplet-eddy interaction 
time, it is clear that this inertia effect is dominating the dispersion behavior for droplet sizes 
>60/~m. The primary cause of slip in our flow is not a consequence of the initial condition for 
axial velocity per se, but rather the slip is due to the rapid negative acceleration of the jet gas which 
occurs in the first 20 nozzle diameters. 

The probability density functions (pdfs) for particle time-of-flight exhibit considerable variation 
in this type of flow. Figure 7 shows the time-of-flight pdfs for 60 #m droplets at four axial locations 
in the flow. The average time-of-flight (figure 5) is subtracted from the data so all the pdfs are 
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Figure 7. Time-of-flight pdf for 60 #m droplets at four axial locations. 
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Table 3. Prope~ies of  t h e p d ~ f o r  fime-ogtlight at severa lax ia l loca t ionsfor  
6 0 ~ m d r o p s  

Axial location, x l / D  

20 30 40 50 

Mean ( t ) (ms)  6.2 14.0 23.5 39.2 
Variance ((t - ( t ) )  2) = a 2 (ms:) 0.15 2.45 7.6 33.6 
Skewness ((t  - ( t ) )3) /a  3 0.54 0.70 0.44 0.25 
Kurtosis (( t  - (t))4)/cr 4 3.2 5.4 2.8 3.1 

centered about zero. The average, variance at 2 = ((t - ( t))2) and skewness S = ((t - (t))3)/a~ are 
noted in table 3. Note that all the pdfs have a positive skewness coefficient. At Xl/D = 20, the pdf 
approximates a delta function. As the droplets slow down, the pdfs broaden rapidly, indicating that 
the droplets are being influenced by the turbulence and some are exposed to regions of the flow 
where the velocity is not close to the centerline value. This conclusion is consistent with the previous 
figure, indicating that slip influences the behavior for the first 30Xl/D until the droplets equilibrate 
with the mean flow. 

Figure 8 shows the time-of-flight pdfs at xl/D = 40 for four droplet sizes. These data indicate 
a divergence in the behavior of the two larger droplet sizes from the smaller two. A possible 
explanation for the observation is that the larger droplet behavior is still influenced heavily by slip 
and the interaction time with turbulent eddies is limited. The relative velocity for the smaller 
droplets is of the same order as the gas velocity fluctuations, and thus, slip is less important than 
turbulence properties. The pdfs are non-Gaussian, having a tail on the positive side. 

Additional insight can be gleaned by considering a condition pdf. Figure 9 shows a pdf of droplet 
axial location conditioned upon the time-of-flight being between t -  At and t + At, where 
t = 32.5 ms and At = 1.3 ms. The pdf is generated by searching the data set at each axial location 
for samples having the specified time-of-flight. Also shown on the plot's right ordinate is the 
transverse dispersion ap.x~2 of those samples used to generate the pdf. The solid lines were obtained 
by performing the identical sorting operation on the simulated trajectories. Note that the simulated 
pdf is more Gaussian and has less variance than the experimental measurements. In general, the 
variance in time-of-flight (and axial velocity fluctuations) is underpredicted by the simulations. The 
monotonically decreasing shape of the dispersion data is intuitively reasonable. For a given 
time-of-flight, the droplets that have not traveled far downstream (low values of Xl/D) have 
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Figure 8. Time-of-flight pdf  for four droplet sizes at an axial location of x I/D = 40. 



900 c . J .  CALL and I. M. K E N N E D Y  

x ,  = 

.Q 
S 2 
o. 

J =: 

0.5 

0.45- 

0.4- 

0.35 - 

0.3. 

0.25. 

0.2. 

0.15. 

0.1 2 

0.05 

0 

35 

o measured conditional pdl 

• dispersion measurements 

- -  simulation 

° :i , , , ~  . . . .  j . . . . .  

37 39 41 43 45 47 49 51 53 

axlal distance xl/D 

300 

• 250 

. 2 0 0  

. 1 5 0  

. 1 0 0  

. 5 0  

0 

5 5  

A 

E 
g 

J 
' o  

Figure 9. Axial position pdf for 60 #m droplets. The samples are conditioned upon the time-of-flight being 
near 32.5 ms. The right ordinate shows the dispersion of the conditioned samples. 

experienced the outer region of the jet where the mean velocity is lower. Consequently, these 
samples are characterized by a large value of dispersion. In contrast, the droplets that have traveled 
far downstream in a given amount of time must have spent more time, on average, near the jet 
axis where the mean axial velocity was highest. 

7. ANALYSIS OF INITIAL CONDITIONS 

To enable accurate numerical modeling of the experiments, the initial conditions for the droplets 
must be well=defined. In addition to the droplets' initial axial velocity, there are two factors which 
have a measurable influence on the downstream dispersion: initial radial velocity fluctuations; and 
the initial location of the droplets relative to the jet axis. 

The experimental apparatus shown in figure 1 was modified slightly to facilitate investigation 
of the effects of the initial conditions. The modification involves feeding a very small air flow into 
the droplet injection shroud (see figure 1). The objective is to slightly perturb the droplets so that 
a random radial velocity is imparted. Within the contraction, all the droplets are pushed toward 
the centerline and then exit the jet within ~ 0.1 mm of the centerline. Their position at the nozzle 
exit is known to be very near the center since all droplets pass through the He-Ne laser beam which 
transects the jet axis. 

As discussed briefly in the introduction, the initial mean square radial velocity can be estimated 
using [3]. Paralleling the development of Vames & Hanratty (1988), [1] can be integrated assuming 
RLp,x2 = 1 and <v~,x2(t)) is constant and equal to (v~,x2(0)) over the short time interval, 

= (v:p,~2(0)>t 2 (small t), [3] (7 P,X2 

in order to determine an initial mean square radial velocity <v~,~2(0)>. In particular, if measure- 
ments are made within the potential core of the jet, it may be assumed that any radial velocity is 
indeed due to initial fluctuations and not shear layer development. This observed initial velocity 
is statistically imposed on the simulation by giving each droplet in the simulation a unique and 
random initial velocity with the observed statistical variance. The initial radial velocities are 
assumed to have a normal distribution with zero mean. 

Figure I0 shows this measurement of <v~,~2(0)> for the 160/~m droplets in the potential core of 
the jet. The lower data set A is where no flow was induced to perturb the droplet initial condition 
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Figure 10. Dispersion data for short time-of-flight. The initial slopes of these data provide an estimate 
of the radial velocity fluctuation in the potential core of the jet. 

and the initial slope is zero. A measurably larger initial velocity fluctuation of <V:p.x2(0))= 0.040 
(m/s) 2 was achieved in data set B with a slight flow in the droplet injection tube. Figure 11 shows 
the effects of these initial conditions on the downstream dispersion. The simulations show similar 
trends but underpredict the dispersion in both cases. 

An effort was made to investigate the effect of the initial conditions on smaller droplets, but we 
were unable to generate disturbances in the droplet initial velocities large enough to measure. For 
droplets with characteristic time scales less than the gas, the droplets equilibrate rapidly; e.g. within 
30 jet diameters, regardless of the initial condition. For droplets with characteristic time scales 
greater than the gas, i.e. > ,-, 90 #m, the droplets do not equilibrate with the flow and the initial 
conditions are carried down field, but their impact is slowly damped out. 

One would expect that if the droplets are injected slightly off-axis, the dispersion patterns would 
be affected. In order to determine the effect of a small off-axis perturbation on the dispersion 
measurements, the apparatus was modified again. By using an extended droplet injection nozzle 
tip and placing it off-axis, it is possible to force the droplets off-center at the jet exit. The droplets 
are pushed rapidly toward the centerline by the gas streamlines and the radial pressure gradient 
in the nozzle contraction. The droplets for the off-axis case were 0.6 + 0.2 mm off-center at the jet 
exit. The uncertainty is due to the difficulty in making a precise measurement of the droplet 
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Figure 11. Effect of the initial conditions for 160/am droplets showing the far-field dispersion. 
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Figure 12. Dispersion measurements for 120 #m droplets illustrating the effect of droplets injected slightly 
off-axis. 

positions relative to the centerline of the jet. In order to produce this perturbation the droplets were 
released inside the jet near the side wall of the nozzle approx. 70 mm above the jet exit. 

As expected, injecting the droplets off-axis has a significant effect on dispersion. Figure 12 shows 
the measurements for 120 #m droplets injected 0.6 mm off-axis as well as the on-axis base case. 
In both cases, the droplet displacement is relative to the observed sample mean; i.e. the dispersion 
is the mean square displacement from the centroid of the droplet distribution. The pdfs of 
transverse plane displacement become increasingly non-Gaussian as the flow evolves for the 
droplets injected off-axis, but are essentially Gaussian for the on-axis case. 

8. CONCLUSIONS 

Particle displacement and time-of-flight statistics have been measured using a particle imaging 
method developed for this study. The statistics can be cast in a Eulerian or Lagrangian form, since 
individual particles have been tracked from a known initial location and each particle's time-of- 
flight is measured. The expreiments have been simulated using a second-order closure for the jet 
flow and a Lagrangian integration for particle trajectories. 

The droplets are far from equilibrium with the turbulence during the first 30x,/D due to mean 
slip between the particles and gas. The slip is induced by the rapid acceleration of the jet. It 
decreases the interaction time between the particles and the surrounding gas and leads to decreased 
dispersion. For large droplets, the effect of the initial conditions at the nozzle exit may persist far 
downstream. This finding may be important with regard to modeling practical combustion sprays, 
where up to half of the fuel mass can be contained in droplets with significant inertia. 

The radial displacement distributions are Gaussian to within the accuracy of the data, and the 
measurements of dispersion show the same limiting cases as do measurements from other types 
of flows. Dispersion grows quadratically in time early in the droplet history, then slows to a nearly 
linear growth rate. Beyond an axial distance of x]/D = 30, the variance in time-of-flight begins to 
grow rapidly and is non-Gaussian. The time-of-flight pdfs have a positive skewness, with measured 
values centered about a value of 0.5. The numerical simulation did not reproduce this aspect of 
the data, and in general, underpredicted the variance of time-of-flight and axial velocity. 

The measured statistics are directly comparable to the droplet dispersion simulations. Simu- 
lations of particle dispersion have yielded reasonable agreement with the measurements, 
particularly for the smaller droplets which have response times less than the gas integral scale. 
The stochastic simulation underpredicted dispersion for the large droplets and the effect of 
initial conditions on dispersion has been quantified. It is recommended that velocity autocorrela- 
tions be directly measured in jets since such data is needed to further evaluate this simulation 
methodology. 
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